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We study the statistics of the force felt by a particle in the class of a spatially correlated distribution of
identical pointlike particles, interacting via a 1/r2 pair force �i.e., gravitational or Coulomb�, and obtained by
randomly perturbing an infinite perfect lattice. We specify the conditions under which the force on a particle is
a well-defined stochastic quantity. We then study the small displacements approximation, giving both the
limitations of its validity and, when it is valid, an expression for the force variance. The method introduced by
Chandrasekhar to find the force probability density function for the homogeneous Poisson particle distribution
is extended to shuffled lattices of particles. In this way, we can derive an approximate expression for the
probability distribution of the force over the full range of perturbations of the lattice, i.e., from very small
�compared to the lattice spacing� to very large where the Poisson limit is recovered. We show in particular the
qualitative change in the large-force tail of the force distribution between these two limits. Excellent accuracy
of our analytic results is found on detailed comparison with results from numerical simulations. These results
provide basic statistical information about the fluctuations of the interactions �i� of the masses in self-
gravitating systems like those encountered in the context of cosmological N-body simulations, and �ii� of the
charges in the ordered phase of the one-component plasma, the so-called Coulomb or Wigner crystal.
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I. INTRODUCTION

The study of the statistical properties of the force felt by a
particle in a gas, and exerted by all the other particles of the
system through pair interactions, can provide useful insights
into the thermodynamics or dynamics of physical systems in
many different contexts and applications. Some important
examples are given by �i� the distribution of the gravitational
force in a spatial distribution of pointlike masses in cosmo-
logical and astrophysical applications �1–3�, �ii� the statistics
of molecular and dipolar interactions �4� in a gas of particles,
�iii� the theory of interacting defects in condensed-matter
physics �5�, and �iv� the contact force distribution in granular
materials �6,7�.

The seminal work in this field is due to Chandrasekhar �1�
and deals mainly with the probability density function �PDF�
of the gravitational force in a homogeneous spatial Poisson
distribution of identical pointlike masses. Specifically, the
PDF of the force is found to be given exactly by the Holtz-
mark distribution, which is a three-dimensional �3D� fat
tailed Lévy distribution �8�. In �2,4,9,10�, approximated gen-

eralizations, in different physical contexts, of this approach
can be found for more complex pointlike particle systems
obtained by perturbing a homogeneous Poisson particle dis-
tribution.

Here we present a study of the probability distribution of
the total gravitational �or Coulomb� force for a specific class
of spatial particle distributions �i.e., point processes�: three-
dimensional shuffled lattices, i.e., lattices in which each par-
ticle is randomly displaced from its lattice position with a
PDF of the displacement p�u�. This study can be very useful
for applications in both solid-state physics �e.g., in the case
of Coulomb or dipolar pair interaction� �4� and in astrophys-
ics and cosmology. In particular, in solid-state physics it is
known that under suitable physical conditions a gas of iden-
tical pointlike charges �immersed in a uniform background
with opposite sign of charge, conserving the global charge
neutrality�, i.e., the so-called one-component plasma �OCP�
�11�, crystallizes giving rise to a state of matter called Cou-
lomb or Wigner crystal �12�. At finite temperature, such a
perfect crystal is perturbed by the presence of phonons �i.e.,
lattice vibrations� that create nonzero Coulomb interactions
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among particles. As we show in this paper, there is a strong
link between the statistical properties of the total force acting
on a generic particle and those of the lattice deformations.
Moreover, the shape of the force probability distribution is
related to the “effective” locality of the interactions, i.e., to
the relative importance of the neighbors of a given particle in
determining the total force.

In the cosmological context, large N-body numerical
simulations of the dynamics of self-gravitating identical mas-
sive particles constitute an essential instrument in the study
of the problem of structure formation in the Universe, start-
ing from small initial mass fluctuations. These simulations
are usually performed by starting from initial conditions,
which are suitably perturbed simple lattices �13,14�. Knowl-
edge of the statistical properties of the gravitational force felt
by a single particle in such a distribution is important in
several respects. First and foremost, it allows one to quantify
the relative importance of the contribution to the force due to
the immediate neighborhood of each particle compared with
that due to far away particles. This is essential both in as-
sessing the importance of effects coming from the finite size
of simulations, and also in understanding the extent to which
a mean-field-type description of the dynamics, in which the
effects of strong local fluctuations due to discreteness are
neglected, is valid. Detailed knowledge of the force distribu-
tion at early times also gives useful information for the nu-
merical discretization of the dynamics, as the force acting on
particles is crucial in determining the temporal resolution.
Analytical results on these quantities are also potentially
very useful as instruments for controlling the precision of
numerical calculations of the force in different approxima-
tion schemes. In this paper we consider, as already men-
tioned, the case in which the perturbations to the particles
initially on the lattice are uncorrelated, while in the cosmo-
logical context they are generically correlated. The results
we use here will be directly applied in a parallel study, which
we will report in a forthcoming paper �15�, of the gravita-
tional dynamics from these shuffled lattice initial conditions.

We will discuss briefly in our conclusions the kinds of
questions that may be addressed in this context, and for the
case of the slightly more complex initial conditions used in
cosmology, using the formal results and methods developed
in this paper.

Quite generally, Chandrasekhar �1� showed that the gravi-
tational force acting on each particle can be seen as due to
the superposition of two different contributions: the former
�a sort of fluid term� is due to the system as a whole, and the
latter is due to the influence of the immediate neighborhood
of the particle and therefore depends on how a spatial mass
distribution �e.g., a fluid� is represented through a pointlike
particle system. The former is a smoothly varying function of
position while the latter is subject to relatively rapid fluctua-
tions. We will show that this is true also for the case of a
shuffled lattice, even though some important differences with
respect to the case of the homogeneous Poisson case are
present when the shuffling is very small due the extreme
uniformity of the particle distribution even at small scales.
When, instead, the shuffling is sufficiently large, we recover
approximately the same behavior as in the Poisson case.

The rest of the paper is organized as follows. In Sec. II,
the principal one- and two-point correlation properties of

point processes and in particular of a shuffled lattice are
briefly reviewed. In Sec. III, we give the statistical definition
of the global gravitational force acting on each particle speci-
fying the conditions under which this is a well-defined sto-
chastic quantity. In particular, we discuss the problem posed
by the infinite volume limit and the necessity of introducing
a compensating uniform negative background mass density
for the statistical definiteness of the gravitational force in this
limit. Here we point out also that this study and the defini-
tions given are valid in both the cases of gravitational and
Coulomb pair interaction. In Sec. IV, we study the stochastic
total gravitational force acting on a particle to linear order in
the random displacements. In this way, we identify two dif-
ferent contributions to this force: the former comes from the
displacements of the pointlike sources keeping the particle
on which we calculate the force at its original lattice posi-
tion, and the latter comes from the displacement of this par-
ticle with respect to the rest of the lattice. The first contribu-
tion is dominated by the particles in the neighborhood of the
particle on which we calculate the force, while the second
can be seen as a force due to the system as a continuous mass
distribution. In Sec. V, the variance of the gravitational force
is calculated in the above approximation and its meaning is
discussed in relation to the form p�u� of the displacement
PDF. In particular, we find the fundamental difference of the
behavior between the two cases in which the particle dis-
placements are limited or not to the elementary lattice cell. In
Sec. VI, in order to go beyond a study of the statistical prop-
erties of the gravitational force limited to the first and second
moment, we briefly report some previously known results
about the PDF of the force in two different situations: the
first is the exact solution of Chandrasekhar for the case of a
three-dimensional homogeneous Poisson particle distribu-
tion, and the second concerns the PDF of the total force in
one-dimensional �1D� shuffled lattices of particles interact-
ing via generic power-law pair interactions. In Sec. VII, we
use the results exposed in the previous section to develop
and discuss an approximate evaluation in the manner of
Chandrasekhar of the PDF �i.e., of all the moments� of the
total force acting on a given particle. This provides much
useful information about the exact PDF of the force. The
approximation becomes better and better when the typical
permitted displacements of the particles approach and go be-
yond the limit of the elementary lattice cell. In Sec. VIII, we
perform a comparison of the theoretical and analytical results
found in the preceding sections with the results obtained by
numerical simulations. The agreement is shown to be very
good in general, despite the fact that the three-dimensional
problem of the gravitational force in a shuffled lattice is not
exactly solvable. In Sec. IX, we summarize the main results
of this work and draw some concluding remarks on their
utility.

II. STATISTICAL PROPERTIES OF A SHUFFLED
LATTICE

Let us introduce some basic notation that will be useful in
the rest of the paper. For the correlation functions and spec-
tra, we will use the notation adopted in cosmology as our
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study will find there its main field of application. Given a
spatial distribution of pointlike particles in a cubic volume V
�we indicate with V both the space region in which the sys-
tem is defined and its volume; in this paper we are interested
in the limit V→�� with equal mass m �i.e., a so-called point
process �10,18��, the microscopic mass density function is

��x� = m�
i

��x − xi� , �1�

where ��x� is the 3D Dirac delta function, xi is the position
of the ith particle of the system, and the sum is over all the
particles of the system. Clearly the microscopic number den-
sity is simply given by n�x�=��x� /m. Let us suppose that
n0�0 is the average number density. Consequently, the av-
erage mass density is simply �0=n0m. The power spectrum
�PS�1 of such a system is defined as

P�k� � lim
V→�

���n̂�k;V��2	
n0

2V
� lim

V→�

����̂�k;V��2	
�0

2V
, �2�

where �¯	 indicates the average over all the realizations of
the point process, and

�n̂�k;V� = 

V

d3xe−ik·x�n�x� − n0�

is the Fourier integral2 in the volume V of the number den-
sity contrast �n�x�−n0�. Note that P�k� does not depend on
m. Therefore, without loss of generality we fix m=1 for the
sake of simplicity and use n�x� for both the number and the
mass density function.

The connected two-point correlation function �10,19�,
also called the covariance function, is defined in general as

�̃�x,x�� =
�n�x�n�x��	

n0
2 − 1.

In the case of statistical translational invariance �or spatial
homogeneity�, it is a function only of the vector distance

�x−x��, i.e., �̃�x ,x��= �̃�x−x�� and satisfies the relation

�̃�x� = F−1�P�k��

and conversely

P�k� = F��̃�x�� . �3�

In general, the correlation function �̃�x� has the following
structure:

�̃�x� =
��x�
n0

+ ��x� , �4�

where ��x� /n0 is the singular “diagonal part” of the covari-
ance function due to the fact that the microscopic density has

an infinite discontinuity on any particle, and ��x� �often de-
noted by h�x� in the statistical physics literature� is the
smooth “off-diagonal” part giving the real two-point correla-
tion between the positions of different particles. The function
�n�x�	p=n0�1+��x�� gives the average conditional density of
particles seen from a spatial point occupied by a particle �10�
�where �¯	p indicates a conditional ensemble average�. This
implies that ��x��−1 for all x as the average density of
particles seen by any particle of the system cannot be nega-
tive. Moreover, at x such that ��x��0 or �0, the conditional
average density is, respectively, larger or smaller than n0, and
this gives the physical meaning of positive and negative
density-density correlations for particle distributions at a
given distance.

The off-diagonal part ��x� vanishes identically only for
the class of homogeneous Poisson point processes in which
each pointlike particle occupies a randomly chosen spatial
point with no correlation with the other particles of the sys-
tem �10,18�. For this reason, this is typically considered as
the paradigmatic example of a spatially uniform and homo-
geneous particle distribution. Note that for this class of point
processes, one has from Eq. �3� P�k�=1/n0 at all k. Another
important quantity to characterize mass �i.e., number� fluc-
tuations in particle distributions is the number variance in
spheres of radius R,

	N
2 �R� = �N2�R�	 − �N�R�	2,

where N�R� is the number of particles in a sphere S�R� of
radius R. Clearly �N�R�	=n0�S�R��, where �S�R��
= �4
 /3�R3 is the volume of the sphere. It is possible to show
�10� that in general 	N

2 �R� can be related to the PS in the
following way:

	N
2 �R�

�N�R�	2 =
 d3k

�2
�3P�k�Ŵ2�k;R�

with Ŵ�k ,R�=F�W�x ,R�� and where W�x ,R� is the window
function of the sphere, equal to unity if x is inside the sphere
centered at the origin and zero otherwise. In particular, one is
interested in the large-R scaling behavior of 	N

2 �R�. For in-
stance, in the Poisson case 	N

2 �R���S�R���R3 �this is the
famous law of Poisson noise�. In general, if P�k��kn at
small k �for the Poisson case obviously n=0� one has
	N

2 �R��Rm at large R with m=3−n for −3�n�1 �with
logarithmic corrections for n=1�, and m=2 for n�1. There-
fore, for n�0, integrated mass fluctuations scale slower than
in the Poisson case. For this reason, this class of mass dis-
tributions is called superhomogeneous �10,19�.

Let us now come to the class of system we study in this
paper. In general, a perturbed lattice can be built by applying
a stochastic displacement to each particle initially belonging
to a regular lattice �e.g., simple cubic�. If R is the generic
lattice site, the density function n�x� for a regular lattice
reads

1In condensed-matter physics it is usually called structure factor.
2In the limit V→�, we adopt in general the following usual nor-

malizations for the Fourier transform: F�g�x��=
d3xe−ik·xg�x� is
the Fourier transform of the function g�x�, and F−1�ĝ�k��
= 1

�2
�3 
d3keik·xĝ�k� is the inverse Fourier transform.
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n�x� = �
R

��x − R� , �5�

where the sum is over all the lattice sites. If, moreover, u�R�
is the displacement applied to the particle initially at R, the
function n�x� for such a SL will be

n�x� = �
R

�„x − R − u�R�… . �6�

In Fig. 1, we present a typical configuration of a 3D per-
turbed cubic lattice projected on one of the lattice planes.
The perturbed lattice is said to be uncorrelated if the dis-
placements applied to different particles are taken indepen-
dent of each other. We call such a system a shuffled lattice
�SL�. This means that p�2�(u�R� ,u�R��)= p�u�R��p�u�R���,
where p�2�(u�R� ,u�R��) is the joint PDF of the displace-
ments applied to two different particles respectively initially
at R and R�, respectively, and p�u� is the PDF of a single
displacement. Without loss of generality, in the following we
limit the discussion to the symmetric case in which p�u�
= p�−u�. Clearly the average over all the possible realizations
of the displacement field coincides with the average over all
the possible realizations of the point process. Therefore, we
will use the notation

�g�u1, . . . ,ul�	 =
 d3u1 ¯ d3ulg�u1, . . . ,ul�p�u1� ¯ p�ul�

for the average of any function of the l displacements ap-
plied, respectively, to l different points.

By calling p̂�k� the characteristic function of a single
stochastic displacement, i.e., its Fourier transform �FT�, we
can write the PS of the final point process as �20�

P�k� =
1

n0
�1 − �p̂�k��2� + �2
�3�p̂�k��2 �

H�0
��k − H� , �7�

where H is the generic vector of the reciprocal lattice �21� of
the real-space lattice giving the initial particle configuration,
and

Pin�k� = �2
�3 �
H�0

��k − H�

is the PS of this initial regular configuration. A 1D example
of such a PS is given in Fig. 2, in which the exact formula
�7� is compared with the PS evaluated in numerical simula-
tions of the SL, showing a perfect agreement. Note that if the
applied displacement field is isotropic, p�u� depends only on
u= �u� and p̂�k� only on k= �k�. However, as the initial par-
ticle configuration is a regular lattice, for a SL there is not
full translational invariance. Therefore, rigorously speaking,
F−1�P�k�� cannot be seen as the the two-point correlation
function of the particle system, but only as the average of

�̃�x0+x ,x0� over x0 as random in the elementary lattice cell.3

It is evident from Eq. �7� that the random shuffling �u�R��
in general does not erase completely in the PS P�k� the
presence of the so-called Bragg peaks �i.e., the sum of �
functions� for each reciprocal-lattice vector H�0, of Pin�k�,
but only modulates their amplitude proportionally to �p̂�H��2,
and adds a continuous contribution typical of stochastic par-
ticle distributions �1− �p̂�k��2� /n0. Around k=0 �more pre-
cisely in the whole first Brillouin zone �21��, Pin�k�=0 iden-
tically �i.e., we can say that around k=0, Pin�k��k�� Thus,
from this point of view, regular lattices can be seen as the
class of the most superhomogeneous particle distributions.
As is clear from Eq. �7�, in this region P�k� is determined by
only the behavior of the displacement characteristic function
p̂�k�. In particular, even though the lattice is strictly aniso-

3Note that this means that when there is not statistical translational
invariance, P�k� contains less information than the two-point cor-

relation function �̃�x ,x��.

FIG. 1. The figure provides the projection on the x-y plane of a
3D shuffled simple cubic lattice of 163 particles in a cubic unitary
volume. In this case p�u�=�i=1

3 f�ui�, where f�ui�=��
− �ui�� / �2
�
�as in the simulations considered in Sec. VIII� with 2
=� /4 �i.e.,
each particle is displaced well inside its elementary lattice cell�.

FIG. 2. Comparison between the PS S�k�=n0
2P�k� measured in

numerical simulations �circles� of a 1D SL �average over 103 real-
izations of the same SL� with the theoretical prediction �continuous
curve� given by Eq. �7� in the case in which the one displacement
PDF p�u�=��
− �u�� / �2
� with �=
 /�=1/50. In order to represent
appropriately the modulated Dirac delta functions contribution to
S�k�, we have normalized their amplitude to a value 102 for the
unperturbed lattice and compared their modulation with the theoret-
ical modulation �p̂�k��2 multiplied also by 102 �top continuous
curve�. For values of k different from Bragg peaks, numerical re-
sults are compared with the continuous part of the theoretical PS
�1− �p̂�k��2� /n0.
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tropic, this implies that if the displacement field is statisti-
cally isotropic, the final SL has isotropic mass fluctuations at
large scales �i.e., for k→0�. By assuming p�u�= p�u�, it is
now simple to show �20� that for any PDF at small k we have

p̂�k� = 1 − Ak� + o�k�� , �8�

where �=2 and A=u2 /6 if u2 is finite �where f�u�
=
d3up�u�f�u��, while �=�−3 and A�0 if p�u� decays as
u−� at large u with ��5 �note that ��3 for any PDF p�u� in
three dimensions�, and therefore u2 is infinite.

In this paper, we focus our attention on the class of SL
where, as written above, the applied displacements are sta-
tistically uncorrelated.

III. DEFINITION OF THE GRAVITATIONAL FORCE ON A
PARTICLE IN A PERTURBED LATTICE

Let us now consider basic questions concerning the defi-
nition of the gravitational force acting on a particle in an
infinite perturbed lattice. As aforementioned, we assume that
�i� all particles have mass m=1, �ii� the average number den-
sity is n0=�−3, where � is the lattice spacing, �iii� the micro-
scopic number density is given by Eq. �6�, and �iv� we
choose the units so that the gravitational constant G=1. Let
us suppose for simplicity that the initial position of the par-
ticle on which we evaluate the gravitational field is the origin
of coordinates �i.e., R=0�. The total gravitational force act-
ing on it is

F = �
R�0

R + u�R� − u�0�
�R + u�R� − u�0��3

, �9�

where the sum is over all the particles initially at the lattice
sites R�0. The same sum can be simply rewritten as

F = 

V

d3xn��x�
x − u�0�

�x − u�0��3
, �10�

where V is the system volume, and

n��x� = n�x� − �„x − u�0�… , �11�

with n�x� given by Eq. �6�.
Note that by simply inverting the sign of the pair interac-

tion, and therefore of the total force from attractive to repul-
sive, and substituting the identical masses with identical
charges, Eq. �9� gives the total repulsive Coulomb force FC
in a perturbed Coulomb lattice �12� on the point-charge at
u�0� and generated by all the other point charges at R
+u�R�,

FC = �
R�0

u�0� − R − u�R�
�R + u�R� − u�0��3

= 

V

d3xn��x�
u�0� − x

�x − u�0��3
.

�12�

Consequently, all the results in this paper can be directly
applied to the statistics of the repulsive force in a shuffled
Coulomb lattice.

We are interested in the limit V→� of Eq. �10�, where we
mean by this limit that the volume V tends to the whole of

R3. It is well known in different physical contexts �21,22�
that, if n0�0, the infinite volume limit of lattice sums such
as those in Eq. �9� or Eq. �12� is in fact not well defined
because these sums are only conditionally convergent in the
limit V→�, i.e., their result depends on the order in which
the single terms are summed. In many physical applications,
however, as in the case of the Coulomb lattice �12�, this sum
is regularized automatically by the presence in the physical
system of a uniform background charge density with oppo-
site sign with respect to that of the point charges and such
that there is overall charge neutrality. Once the attractive
force Fb of the background on the point charges is taken into
account, by adding the corresponding term

Fb�u0� = n0

V

d3x
x − u0

�x − u0�3

to Eq. �12�, then the total Coulomb force acting on a given
point charge is finite and its value is independent of the way
in which the infinite volume limit is taken.4 To clarify this
point, let us consider the following system: a density of point
charges n�x� given by Eq. �1� with m=1 embedded in a
uniform background charge density −n0=−�n�x�	. Therefore,
the local charge density at the point x will be �n�x�=n�x�
−n0. The force acting on a probe charge at the point y of the
space and generated by the total charge in the volume V
around it will be

F�y;V� = 

V

d3x�n�x�
y − x

�y − x�3
. �13�

Let us now assume that the PS of n�x�, and therefore of
�n�x�, has the behavior P�k��ka at small k, with a�−3 �in
three dimensions�. Under these hypotheses �see, e.g., �20�� it
is simple to show that

��

V

d3x�n�x��2� � Vb/3

with b=3−a if a�1 and b=2 if a�1. From Eq. �13�, we
then expect in general that F�y�=F�y ;V→ +�� is a well
defined stochastic quantity �i.e., a stochastic quantity whose
statistics is well defined and not depending on how the com-
pact volume V is sent to infinity� if a�−1.5 Indeed for these
values of a, fluctuations in the density contrast �n�x� gener-
ate in the infinite volume limit quadratic fluctuations in the
force F that are size-independent. This is, in particular, the
case for the SL we consider in this paper, for which we have
shown that a�0 for any displacement PDF p�u� �see Eq.

4This is true provided V is a compact set of R3, containing both
the point charges and the uniform opposite charged background.

5Note, however, that the difference of the force between any two
points of the space is a well defined stochastic quantity for any
statistically homogeneous particle distribution with a�−3, i.e.,
when the mass density PS is well defined for k→0 �i.e., integrable�.
In systems with −3�a�−1, the force acting on the center of mass
of any subregion would be divergent in the infinite volume limit,
but this is not relevant for the evolution of the relative distance of
the particles.
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�8��. Given that the limit V→� of Eq. �13� does not depend
on the way in which the limit is performed, we can choose
for simplicity to take the volume V symmetric with respect to
the point y where the force is computed. In such a volume,
the contribution to the force F�y ;V� from the background
vanishes by symmetry. Consequently, with this choice of the
volume V, the force F�y� coincides with the limit of the sum
�13� with �n�x� replaced by n�x� �i.e., summing only over
the particles�.

This, in particular, implies that for the SL particle distri-
bution we will study here, in the presence of an oppositely
charged neutralizing background, we can evaluate the well
defined global force F acting on the point charge in u�0�
simply using Eq. �12� where the sum is over all the charges
contained in a sphere S�r ;u�0�� of radius r centered on u�0�
and then taking the limit r→�. Note that, on the other hand,
the limit r→� of Eq. �12� using instead the sphere S�r ;0�
centered on the point 0, where the considered particle was
before the displacement, does not give the full force F on the
point u�0�. To obtain it the background contribution, which
now is different from zero, must be added.

In the rest of this paper, for convenience, we will choose
to take the infinite volume limit in the former way, i.e., sym-
metrically in spheres about the considered particle, also in
the treatment of the gravitational problem, i.e., for Eq. �9�. It
is possible in fact to show that the presence of an analogous
background with a negative mass density �now exerting a
repulsive force on the massive particles� comes out naturally
when the motion of a particle is described in comoving co-
ordinates starting from the exact equations of general relativ-
ity in a quasi-uniform expanding Universe �see, e.g., �23��.
In pure Newtonian gravity, instead, such a background does
not exist and has to be introduced artificially to regularize the
problem �Jean’s swindle, see �22��. The results given here for
the statistics of the force F have thus to be understood as
strictly valid in the presence of such a compensating back-
ground.

In �24�, a simple estimation was given of the contribution
of the first six nearest neighbors �NN� of the particle to Eq.
�9� for a simple cubic lattice. We show now that instead the
sum of Eq. �9� on a sphere of radius r around the central
particle can be seen as the sum of two different contribu-
tions: the first “asymmetric” one is due to the self-shuffling
u�0� of the center particle from the initial R=0, and can be
seen as induced by the system as a whole. The second “sym-
metric” term is due to the shuffling of all the other particles,
and is dominated by the contribution of the first six NN.

IV. THE SMALL DISPLACEMENTS BEHAVIOR OF THE
FORCE

In this section, we will give the approximate expression of
F obtained through a linearization in the particle displace-
ments. The statistical meaning and the limitations on taking
averages of powers of this linearized expression will be dis-
cussed in the next section. To simplify our computation, but
without loss of generality of the results, we limit the discus-
sion to those lattices with a cubic symmetry: i.e., simple
cubic, body centered cubic, and face centered cubic lattices.

As shown above, let us rewrite Eq. �9� as

F = lim
r→�



S�r;u�0��

n��x�
x − u�0�

�x − u�0��3
d3x , �14�

where the integral is over the sphere S�r ;u�0�� defined
above, and n��x� is given by Eq. �11�. In this section, we are
interested in the linear contribution in the displacement field
F�l� to Eq. �14� for small displacements. Note that

dF�x� = n��x�
x − u�0�

�x − u�0��3
d3x

is the force contribution coming from the volume element
d3x around x. Therefore, we can rewrite Eq. �14� as

F = lim
r→�

F�r;u�0�� = lim
r→�



S�r;u�0��

dF�x� . �15�

We now write



S�r;u�0��

dF�x� = 

S�r;0�

dF�x� + 

�S�r;u�0��

dF�x� , �16�

where S�r ;0� is the sphere of radius r centered on the lattice
point R=0, and the integration over �S�r ;u�0�� means the
integration over the portion of S�r ;u�0�� not included in
S�r ;0� minus the one over the portion of S�r ;0� not included
in S�r ;u�0��6 �see Fig. 3�.

Note that these portions of sphere both have the same
volume, which is proportional to �u�0��. Consequently, we
expect that this second integral will give a force contribution
of order u�0�.

Let us start by evaluating the first term in Eq. �16�,

6This coincides with the integration over the sphere S�r ;u�0��
minus the integration on the sphere S�r ;0�.

FIG. 3. The two overlapping spheres S�r ;0� and S�r ;u�0�� of
radius r, centered, respectively, at 0 and u�0�, are represented. The
integral in Eq. �16� over �S�r ;u�0�� corresponds to the integral over
the region B in the figure �indicated with horizontal dashed lines�
minus the integral over the region A �indicated with vertical dashed
lines�. This clarifies the dipolar nature of this term.
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FS�r� � 

S�r;0�

dF�x� ,

to first order in the displacements. It can be written as Eq.
�9�, where the sum is over all the particles contained in the
sphere S�r ;0� with the exception of the one at u�0�. We thus
denote this kind of sum by �R�0

R�r , i.e.,

FS�r� = �
R�0

R�r
R + u�R� − u�0�

�R + u�R� − u�0��3
. �17�

We are interested in the contribution FS
�l��r� to this quantity at

linear order in the displacement field. Performing a Taylor
expansion of Eq. �17� to first order in the �relative� displace-
ments, we can write

FS
�l��r� = �

R�0

R�r

fR, �18�

with

fR =
3�u�0� · R̂�R̂ − u�0�

R3 +
u�R� − 3�u�R� · R̂�R̂

R3 , �19�

where R̂=R /R is the unit vector in the direction of the lattice
site R. The quantity FS

�l��r� will be a good approximation to
FS�r� if all the �relative� displacements are sufficiently small
�see the next section�. Equations �18� and �19� show that, at
first order, the contribution to the force separates into a part
due to the displacement of the particle on which we calculate
the force, and a part due to the displacement of the particle
originally at R. Let us write

fR = fR
o + fR

s �20�

with

fR
o =

− u�0� + 3�u�0� · R̂�
R3 , �21�

fR
s =

u�R� − 3�u�R� · R̂�R̂
R3 . �22�

It is simple to show, for the class of lattices we consider, that

�
R�0

R�r

fR
o � 0 �23�

when the sum is taken up to include all the lattice sites R
�0 distributed symmetrically with respect to R=0 up to a
given distance. The key points to show this are �i� to rewrite
the sum in Eq. �23� as a sum over all the permitted values of
R= �R � �r of the sums over all the sites with fixed R; �ii� to
consider that for the sub-sum over all the sites R, with fixed
R= �R�, we can write

�
R

�R�=R

fR
o =

1

R3 �
R

�R�=R

�− u�0� + 3�u�0� · R̂�R̂�;

and �iii� to note that

3 �
R

�R�=R

�u�0� · R̂�R̂ = �
R

�R�=R

�R̂ · R̂�u�0� = �
R

�R�=R

u�0�

from which Eq. �23� follows. Therefore, we can conclude
that

FS
�l��r� = �

R�0

R�r
u�R� − 3�u�R� · R̂�R̂

R3 �24�

and we will call simply

FS
�l� = lim

r→�
FS

�l��r� .

Let us consider now the second term in Eq. �16�, which
we call FA�r�,

FA�r� = 

�S�r;u�0��

d3x
n��x��x − u�0��

�x − u�0��3
. �25�

Since we wish to evaluate the above integral to linear order
in u�0�, and the volume of integration is already of order
�u�0��, we can substitute n��x� with its average �the point
u�0� is not included in the volume of integration� n0=�−3 and
put u�0�=0 in the integrand. It is then straightforward to
show that, taking the limit r→� and working to first order in
u�0�, we have

FA � FA
�l� =

4


3
n0u�0� , �26�

where we have simply called FA=limr→�FA�r� and FA
�l� its

approximation at linear order in the displacement. Note that,
as discussed in the previous section, this quantity can be seen
as the force exerted by the negative background contained in
the sphere S�r ;0� on the particle at u�0�.

Let us summarize before proceeding further in the next
section. We have now seen that, to first order in the displace-
ments, we can write

F�l� = FA
�l� + FS

�l� =
4


3
n0u�0� + lim

r→�
�

R�0

R�r
u�R� − 3�u�R� · R̂�R̂

R3 ,

�27�

where the sum is taken in the sphere S�r ;0�. As explained in
Sec. III, Eq. �27� gives the well defined infinite volume limit
of the force, to first order in the displacements, generated by
the system composed both by the particles and the uniform
negative background density. Note that Eq. �27� can be in-
terpreted as either the force on the particle at u�0� due only
to the other particles contained in the sphere S�r ;u�0�� �with
r→��, with no contribution from the background due to
symmetry reasons, or the sum of the force on the particle at
u�0� coming from both the other particles contained in the
sphere S�r ;0� �with r→�� and the background in the same
sphere.

V. SMALL DISPLACEMENTS VARIANCE OF THE FORCE

We now turn to the problem of the variance of the force
�F2	. Considering Eq. �27�, one might think that, if the vari-
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ance of the displacements u2��2, then the right-hand side of
Eq. �27� can be used to evaluate the variance of the force.
This is not, however, as we will see, always true. In fact, we
will show below, if p�u��0 for u�� /2 in such a way to
permit at least a pair �and therefore an infinite number of
pairs� of particles of the SL to be found arbitrarily close to
one another, then �F2	 diverges due to the divergence of the
pair interaction for vanishing separation. This clarifies the
meaning and the validity of this “small displacement” ap-
proximation given by Eq. �27�: in order to use it to calculate
�F2	, it is not sufficient to have u2��2. It is instead neces-
sary �and sufficient� that all the displacements are smaller
than half the elementary lattice cell size � �i.e., that the sup-
port of p�u� is completely contained in the elementary lattice
cell� so that each particle has a positive minimal separation
from its first nearest neighbor.

In this section, we will suppose that this is the case, i.e.,
displacements are limited to a region contained in the el-
ementary lattice cell. Given this hypothesis, because of the
mutual statistical independence of the displacements applied
to different particles, the average quadratic force acting on
each particle, to order u2, is then simply

�F2	 � ��F�l��2	

= ��FA
�l��2	 + ��FS

�l��2	

= �4


3
n0�2

u2 + lim
r→�

�
R�0

R�r ��u�R� − 3�u�R� · R̂�R̂�2	
R6 .

�28�

If, moreover, we assume that not only the displacements of
different particles but also the different components of the
displacement of a single particle are uncorrelated, it is simple
to show that, for the class of lattices considered, we have

��u�R� − 3�u�R� · R̂�R̂�2	 = 2��u�R��2	 = 2u2. �29�

With these hypotheses, we can therefore write

��F�l��2	 = ��4


3
n0�2

+ 2 �
R�0

1

R6�u2, �30�

where the sum is now over all the lattice vectors R�0. Per-
forming the lattice sum in Eq. �30�, for a simple cubic lattice,
we find

2u2 �
R�0

1

R6 = 12� 1

�3�2

u2�c1NN + c2NN + c3NN + ¯ �

� 16.1� 1

�3�2

u2, �31�

where ciNN is the relative contribution to the sum �R�0
1

R6 of
the set of ith nearest-neighbor lattice sites of the origin R
=0, normalized such that c1NN=1 �giving c2NN=1/4 and
c3NN=4/81�. With these approximations, we then find for a
simple cubic lattice

��F2	 � ���F�l��2	 = ���FS
�l��2	 + ��FA

�l��2	 = �n0U0, �32�

where U0=�u2 and

� ��16.1 + �4


3
�2

� 5.86. �33�

Hence we can draw a first conclusion: while in the case of a
homogeneous Poisson particle distribution �1� the gravita-
tional force acting on a given particle is dominated by the
first nearest neighbor, in the present case it is dominated by
two terms: the former is a global term FA due to the displace-
ment with respect to the rest of the system of the particle on
which we calculate the force, and the latter, FS, is mainly due
to the set of the first-nearest-neighbors lattice sites, which all
lie at “almost” the same distance. As shown explicitly below,
because of the symmetries of the initial lattice, the net gravi-
tational force in a SL is clearly very depressed, for small
displacements, with respect to the single-nearest-neighbor
contribution of the Poisson case with the same average den-
sity n0.

VI. USEFUL RESULTS ON THE PROBABILITY
DISTRIBUTION OF THE FORCE

In the next section, we will generalize to our case the
method introduced by Chandrasekhar �1� for calculating the
PDF P�F� of the gravitational force F in a 3D homogeneous
Poisson particle distribution �10�. As a starting point, we
briefly report in this scetion Chandrasekhar’s results for this
latter case. The specific form of P�F� in this case is called
the Holtzmark distribution, and for this reason we will de-
note it PH�F�. Subsequently, we give a brief presentation of
the exact derivation of the P�F� in a 1D SL for a general
power-law pair interaction. Finally, we proceed to generalize
Chandrasekhar’s method to the 3D SL by introducing some
ad hoc approximations. These results, together with those
presented in previous sections on the small displacement ap-
proximation, will provide us with a good qualitative compre-
hension of the behavior of P�F� in a 3D SL when the shape
of p�u� is varied, and in particular when one passes from
displacements limited to an elementary lattice cell to larger
maximal displacements.

A. Gravitational force PDF in a homogeneous 3D Poisson
particle distribution

In this subsection, we give a brief account of the force
PDF PH�F� for a three-dimensional homogeneous Poisson
particle distribution which, as aforementioned, is called the
Holtzmark distribution. The exact mathematical derivation of
this PDF can be found in �1�. One considers a homogeneous
Poisson particle distribution in a cubic volume with average
number density n0. As written above, its two-point correla-
tion function is simply

�̃�x� =
��x�
n0

,

i.e., there is no correlation between the position of different
particles. Because of the total absence of correlations in the
positions of different particles, the PDF of the force/field at a
point is the same whether the point is occupied or not by a
particle.
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While it is not possible to write an explicit expression for
PH�F�, is is possible for its FT AH�q�=F�PH�F��, i.e., for the
characteristic function of F �1�,

AH�q� � e−n0CH�q� = exp�− n0
4�2
q�3/2

15
� . �34�

Chandrasekhar’s derivation of this relation is based on the
following observations: �i� The definition of PH�F� is

PH�F� =
 d3x1 ¯ d3xNpc
�N��x1, . . . ,xN���F − �

i=1

N
xi

xi
3� ,

�35�

where pc
�N��x1 , . . . ,xN� is the joint conditional PDF of the

positions of the whole set of N particles in the system vol-
ume V seen by the particle, at the origin of the chosen axes,
experiencing the force; �ii� from the definition of a homoge-
neous Poisson point process, one has simply pc

�N�

��x1 , . . . ,xN�= �1/V�N �i.e., it coincides with the joint PDF
of the positions with no condition on the occupation of the
origin�. By using this in Eq. �35� and taking the FT together
with the limit �N ,V�→ +� with fixed n0=N /V, it is simple
to recover Eq. �34�.

Note that AH�q� is a typical example of a characteristic
function of a Levy stable distribution �25� with exponent
3 /2. The fact that AH�q� depends only on q= �q� means that
PH�F� depends only on F= �F� �the particle distribution is
statistically isotropic�. Since AH�q� is not analytic at q=0,
PH�F� has a power-law tail at large F. Specifically, as
AH�q���1−4n0�2
q�3/2 /15�, we have PH�F��F−9/2. This
shows that moments �F�	 of order ��3/2 diverge.7

In particular, the variance of the force diverges. It is
simple to see that this is due to the small-scale divergence of
the pair gravitational interaction together with the fact that
particles can be found arbitrarily close to one another. We
then expect the same large-F scaling behavior of P�F� for a
SL when the support of p�u� is larger than the elementary
lattice size, as, just as in the Poisson distribution, one can
then find an infinite number of pairs of particles with mem-
bers arbitrarily close to one another. We show this below
both with the exact results in one dimension in Sec. VI B,
and with the approximate approach in the manner of Chan-
drasekhar in Sec. VII.

We first recall the limiting behaviors of PH�F�, which can
be deduced directly from Eq. �34�,

WH�F� �
4

3
F*
3F2 for F → 0+, �36a�

WH�F� �
15

8
� 2



F*

3/2F−5/2 for F → � �36b�

with

F* = 2
�4n0

15
�2/3

,

and where WH�F�=4
F2PH�F� is the PDF of the modulus of
F. The quantity F* can be seen as the typical force acting on
a particle and is called the normal field in �1�. It is also
important to note that, in the Poisson case for large values of
F, the WH�F� is well approximated by the PDF of the modu-
lus of the force due only to the NN particle �10�,

WNN�F� = 2
n0F−5/2 exp�−
4
n0F−3/2

3
� . �37�

This means that the main contribution to the force felt by a
particle in a homogeneous Poisson distribution comes from
the first NN particle, and is due to the small distance diver-
gence of the pair gravitational interaction.

B. Exact results for the 1D SL

Before introducing an approximate approach à la Chan-
drasekhar for the SL in 3D, we give some exact results ob-
tained for the force PDF in an analogous 1D SL of particles
interacting via a power-law interaction as presented in �26�.

Let us consider a 1D SL, i.e., a set of 2N+1 pointlike
particles of unitary mass placed at the points xm=m�+um
with m=−N , . . . ,N of the segment �−L /2 ,L /2�, where �
=L / �2N+1� is the lattice spacing �and n0=1/� is the average
particle density� and um is the displacement of the mth par-
ticle from the lattice position m�. We assume that all the um
are extracted from the same PDF p�u� independently of one
another, and that the particles interact via the attractive pair
force,

f�x� =
x

�x��+1 ,

where x is the particle separation and ��0.
Therefore, the particle at x0=u0 feels the total force

F = �
m�0

−N,N
m� + um − u0

�m� + um − u0��+1 . �38�

Note that F is not a sum of statistically independent terms as
each of these terms depend on two displacements, one of
which is always u0. By considering that the PDF of xm is
simply given by p�xm−m��, we can formally write the PDF
P�F� of the stochastic force F as �26�

P�F� =
 . . 

−�

+� � �
m=−�

+�

dxmp�xm − m���
���F − �

m�0

−�,+�
xm − x0

�xm − x0��+1� , �39�

in which we have taken directly the �symmetric� limit N
→� with � fixed. By taking the FT in F of Eq. �39�, one can
write the characteristic function of the stochastic force as

7It is possible to obtain these results noting that −n0CH�q� is the
cumulant generating function of the stochastic force F, which is
nonanalytic at q=0 and with only one continuous derivative.
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P̃�q� = 

−�

�

dx0p�x0�� �
n�0

−�,+� 

−�

�

dsp�s + x0

− n��exp� iqs

�s��+1�� . �40�

Through an exact analysis �26� of the small-q behavior of
Eq. �40�, one can distinguish essentially two classes of SL
for what concerns the large F behavior of P�F�.

�i� First class: No particle can be found arbitrarily close to
any other particle, i.e., the supports of p�u� and of p�u
−n��, respectively, for all integer n�0, have an empty over-
lap. Specifically, this is the case if $
� �0,� /2� such that
p�u�=0 for �u��
, i.e., when the support of p�u� is all con-
tained in one elementary lattice cell. In this case, P�F� van-
ishes at large F for all values ��0 faster than any negative
power of F and all the moments �Fn	 are finite for any n
�0. If, moreover, p�u�= p�−u�, P�F� is not far from a Gauss-
ian with zero mean, even though there are deviations from
pure Gaussianity depending on the exact shape of p�u�. The
finite variance of F in this case is given by

�F2	
2

= �
l=1

+�

�
n=1

+�

�Š��u − x0 + n��−�	u��u − x0 + l��−�	u‹x0

− Š��u − x0 + n��−�	u��u + x0 + l��−�	u‹x0
�

+ �
n=1

+�

Š��u − x0 + n��−2�	u − ��u − x0 + n��−�
‹u

2
‹x0

,

�41�

where simply ��¯�	u=
−�
+�dup�u��¯� and ��¯�	x0

=
−�
+�dx0p�x0��¯�. Thus the force variance is composed of

two distinct contributions: �i� the double sum, which is de-
termined basically by the fluctuations created by the stochas-
tic displacement x0 of the particle initially at the origin on
which we evaluate the force �in this term the average over u,
i.e., over the sources, plays the role of a smoothing�; �ii� the
single sum, which is instead mainly due to the fluctuations in
the displacements u of all the sources of the force �in this
term only the average over x0 is a smoothing operation�. This
coincides qualitatively with what we have seen in Eq. �30�
for the three-dimensional case with an approximate calcula-
tion. The analogy with Eq. �30� can be made stronger with
the hypothesis of small displacements, i.e., u2 /�2�1, where,
in analogy with 3D, we have called u2=
−�

+�dup�u�u2. Keep-
ing only terms up to the second order in the random displace-
ments, it is simple to show that Eq. �41� can be rewritten as

�F2	 �
2�2u2

�2��+1� �2�2�� + 1� + ��2� + 2�� , �42�

where ��x� is the Riemann zeta function. In this expression,
the first contribution comes from the fluctuations of the po-
sition of the particle on which we calculate the force, and the
latter comes from the fluctuations of the positions of the
sources. In particular, by writing

��2� + 2� = �
n=1

�
1

n2�+2 ,

it is simple to show that the nth term in the sum gives the
relative contribution of the nth NN lattice sites of the origin
to the force for u2 /�2�1.

�ii� Second class: At least one pair of particles �and there-
fore an infinite number of pairs� can be found arbitrarily
close to one each other, i.e., the supports of p�u� and of
p�u−na�, respectively, for at least an integer n�0, have a
finite intersection. The simplest case in this class is when
$��0 such that p�u��0 for all �u��� /2+�. In this case, it
is possible to show �26� that the large-F tail of P�F� is pro-
portional to F−1−1/�. More precisely,

P�F� � BF−1−1/� for F → � �43�

with

B =
1

�



−�

+�

dx0p�x0� �
−2u*/��n�2u*/�

n�0

p�x0 − n�� , �44�

where u* is such that p�u��0 for u�u* and vanishes for u
�u* �and u*= +� for p�u� with unlimited support�. Note that
the large-F exponent of P�F� is independent of the details of
p�u�. Moreover, it coincides with the exponent characterizing
the large-F tail of the 1D Levy PDF found for a 1D Poisson
particle distribution,8 i.e., the 1D analog of the Holtzmark
distribution seen in the previous section. In this case, the
amplitude B of the tail in the SL is
�
−�

+�dx0p�x0��−2u*/��n�2u*/�
n�0 p�x0−n���1 times smaller than

the amplitude of the Poisson case, which is simply 1/ ����
�26�. We note also that, if u*�� and p�u� is smooth �i.e.,
approximately constant� on the length scale �, we can ap-
proximate Eq. �44� with

B =
1 − p�0��

��
. �45�

This last approximated expression is again independent of
the details of p�u� for u�0.

Intermediate cases between �i�, rapidly decreasing P�F�,
and �ii�, Holtzmark-like power law tail of P�F�, are possible
only if displacements are permitted exactly up to �u�=� /2 but
not beyond this value. In this case, depending on how p�u�
behaves in the neighborhood of u= ±� /2, one can have in-
termediate large-F tail behaviors of P�F�, e.g., a power-law
decreasing faster than F−1−1/�.

The results just outlined coincide qualitatively with those
we will now find using an approximate generalization of
Chandrasekhar’s approach to the case of a three-dimensional
SL. We will see that this method gives accurate predictions
on the large-F behavior of P�F� for all p�u�, even though the
accuracy for the amplitude of this tail is good only in the
limit of sufficiently large displacements.

8It is simply found by rephrasing the Chandrasekhar method to the
1D case.
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VII. APPROXIMATE CHANDRASEKHAR APPROACH TO
P„F… IN THE 3D SL

We extend here the formalism developed in �1�, and
briefly presented in Sec. VI A, in a similar way to what has
been done in �9� for particle distributions generated by a
Gauss-Poisson process. As shown in this latter paper, for
spatially correlated point processes in which each point has
the same mass, it is possible to introduce an approximated
PDF for the gravitational �or Coulomb� force felt by each
particle �identical charge� of the system and due to all the
others. The approximation consists in using only the infor-
mation carried by one- and two-point correlation functions of
the number density field.

Let us consider the general problem of a statistically ho-
mogeneous particle distribution in a cubic volume of side L
�and hence of volume V=L3� and mean number density n0
�with L�n0

−1/3�. As usual, the microscopic density is given
by Eq. �1� with m=1. In analogy with Sec. VI A, we study
here the PDF of the total gravitational force on the particle at
x0 due to the other N points in the system in the limit V
→� with N /V=n0�0 fixed �taking, as explained above, the
limit symmetrically with respect to the point x0�.9 For sim-
plicity, let us take a coordinate system such that x0 coincides
with the origin. The other N particles occupy the positions
x1 ,x2 , . . . ,xN, respectively. The force acting on the probe
particle at the origin is

F = �
i=1

N
xi

xi
3 . �46�

Let pc
�N��x1 ,x2 , . . . ,xN� be the conditional joint PDF of the

positions of the N other particles with respect to the probe at
the origin. The approximation we use consists essentially in
assuming the validity of the following factorization:

pc
�N��x1,x2, . . . ,xN� = �

i=1

N

pc�xi� , �47�

where pc�x� is the conditional PDF of the position x of a
given particle with the condition that the origin of coordi-
nates is occupied by another particle of the system. We thus
approximate the system seen by the particle at the origin
with an inhomogeneous Poisson particle distribution with
space-dependent average density proportional to pc�x�, in-
setad of the simple 1/V used above for the homogeneous
Poisson case. This hypothesis works well in the Gauss-
Poisson case �9�, and we expect it not to be bad for any
particle distribution that does not differ too much from a
Poisson one, i.e., with a two-point correlation function ��x�
that is short-range �i.e., integrable� and with a small ampli-
tude. This means that in our case of a SL, we expect that the
approximation will give a quantitatively good estimate of
P�F� only when the typical displacement of a particle starts

to be of the order of the lattice cell size. In fact, it is only in
this case that the lattice Bragg peaks contribution to the PS
of Eq. �7� is strongly reduced and, consequently, the ampli-
tude of ��x� is small enough. However, we will see that even
for smaller displacements, when the force variance is finite,
this approximation gives good quantitative predictions about
the large-F tail of P�F�, even though the value of the force
variance is accurate only for the case in which the largest
permitted displacement starts to approach the cell boundary.
This means that when instead the maximal permitted dis-
placement is much smaller than the lattice cell size, we keep
the qualitative results we present in this section but use for
the variance of F Eqs. �28� and �30�.

Directly from the definition of the two-point correlation
function, we have

pc�x� = A�1 + ��x�� , �48�

where A�1/V is the normalization constant, and ��x� for
any stationary point process is defined as the off-diagonal

part of the covariance function �̃�x� �see Eq. �4��.
Making these hypotheses, and following the same steps

written above for the homogeneous Poisson case, it is pos-
sible to write �10�, in the infinite volume limit with n0 fixed,
the PDF of F as

P�F� =
 d3q

�2
�3eiq·F exp�− n0
 d3x�1 + ��x��

��1 − e−iq·x/x3
�� . �49�

It will be useful to rewrite this in the form

P�F� =
 d3q

�2
�3eiq·F exp�− n0CH�q�

− n0
 d3x��x��1 − e−iq·x/x3
�� , �50�

where CH�q�=4�2
q�3/2 /15, with the multiplicative factor
−n0, is the cumulant generating function for F in the homo-
geneous Poisson case already considered in Sec. VI A �see
Eq. �34��. The function

A�q� � 
 d3Fe−iq·FP�F�

= exp�− n0
 d3x�1 + ��x���1 − e−iq·x/x3
�� �51�

is the characteristic function of the stochastic force F. We
recall that the function

G�q� = ln A�q� = − n0
 d3x�1 + ��x���1 − e−iq·x/x3
�

�52�

is the cumulant generating function of the stochastic field F
�27�. The cumulants �i.e., the connected parts of the mo-
ments� of F can be directly calculated by taking the deriva-
tives of this function at q=0. Therefore, the small-q behavior

9Because of the stochastic nature of the point process, N can de-
viate from n0V by a quantity growing slower than V, which thus
does not affect the results we present, which are given in the infinite
volume limit.
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of G�q� describes the large-F properties of P�F�. Since in Eq.
�51� the small-q region corresponds to the small-x region of
��x�, we can say roughly that the large-F behavior of P�F� is
basically determined by the small separation properties of
the particle distribution �and therefore on the small x behav-
ior of ��x��. We have already considered this aspect both for
the Chandrasekhar method for the homogeneous Poisson
particle distribution and for the exact results in 1D. For the
homogeneous Poisson case, the off-diagonal part of the re-
duced correlation function is ��x��0, and Eq. �51� becomes
consistently Eq. �34�, which implies Eq. �36a�.

A. The large-F behavior of P„F…

In order to simplify the calculations which follow, we
make the assumption that ��x�=��x� even though, rigorously
speaking, this is not the case for our SL because of the un-
derlying lattice symmetry even when p�u� depends only on
u= �u�. For the SL this can be seen as an approximation con-
sisting in substituting ��x� in Eq. �50� with its angular aver-
age. Assuming ��x�=��x� implies that A�q� and P�F� de-
pend, respectively, only on q and F, and Eq. �52� can be
rewritten as

G�q� = − 4
n0

0

�

dxx2�1 + ��x���1 −
x2

q
sin� q

x2��
= − n0�CH�q� + 4



0

�

dxx2��x�

��1 −
x2

q
sin� q

x2��� . �53�

Let us now analyze how the shape of ��x� determines the
large-F tail of P�F�. To do this, the fundamental step is to
study the small-q behavior of G�q�. In this respect, we dis-
tinguish below three cases for the choice of p�u� with a
continuous and convex support: �Sec. VII A 1, large dis-
placements� it permits, at least in some directions, displace-
ments of particles beyond the border of their elementary lat-
tice cells, allowing, in this way, different particles to be
found arbitrarily close to one each other; �Sec. VII A 2, mar-
ginal displacements� it permits, at least in some directions,
displacements exactly up to the border of the elementary
lattice cell and in no direction beyond it, allowing different
particles to be found arbitrarily close to one each other, but
only marginally; �Sec. VII A 3, small displacements� its sup-
port is all contained in an internal region of the elementary
lattice cell so that there is a finite lower bound on the dis-
tance between any two particles.

As has been noted in the discussion above about the ac-
curacy of the approximation �47� and �48�, we expect to
obtain better and better approximations for P�F� the larger
the typical particle displacement is.

In all three cases, it is important to note that G�0�=0.
Moreover, as a SL is “superhomogeneous,” 
d3x��x�=−n0

=−�−3. We now treat one by one the above three cases.

1. Large displacements

In this case, it is simple to show that ��0��−1 and finite.
In fact, the average conditional density n0�1+��x�� has to
converge to a positive constant for x→0, as the large dis-
placements permit couples of particles to be found arbitrarily
close to one another. This is sufficient to show �see Appendix
A� that, up to the leading term at small q, we have

G�q� � −
4

15
n0�1 + ��0���2
q�3/2,

which is of the same order in q of CH�q�. By recalling that
A�q�=exp�G�q�� and performing the Fourier transform �50�,
we can simply derive at large F that

P�F� � �1 + ��0��PH�F� ,

which can be rewritten in terms of the PDF of F= �F�,
W�F�=4
F2P�F�, as

W�F� � �1 + ��0��WH�F� � �1 + ��0��
15

8
� 2



F*

3/2F−5/2,

�54�

where we have used Eq. �36b�. This means that in this case
P�F� presents the same large force scaling behavior as that of
the Holtzmark distribution, but with an amplitude greater by
a factor 1+��0�. Given that n0�1+��0�� is the average con-
ditional density of other particles at zero distance, it is simple
to show that for a SL one can write

1 + ��0� =
1

n0
�

R�0

 d3up�u�p�u − R� ,

from which one finds the 3D analog of Eq. �44�. Note that
for most choices of p�u� one has also ��0��0 �i.e., as ex-
plained in Sec. II, the system is negatively correlated at small
scales�. Therefore, the amplitude of the tail will usually be
reduced with respect to that in the Holtzmark case. In any
case, as for the Holtzmark distribution, all the generalized
moments �F�	 diverge for ��3/2.

2. Marginal displacements

In this case ��x���−1+Bx�� with B ,��0 at small x. In
fact, as displacements are permitted up to exactly the cell
boundary, the probability of finding a particle at distance x
from another fixed particle must vanish continuously for x
→0. By studying the small-scale behavior of G�q� �see Ap-
pendix A�, we can conclude that for q→0 we have the fol-
lowing.

�i� G�q��−q�3+��/2 if 0���1, which implies W�F�
�F−�5+��/2 at large F. In this case, the variance �F2	 is thus
divergent, but slower than in the Holtzmark case.

�ii� G�q��q2 log q if �=1, implying W�F��F−3 �giving a
logarithmically divergent variance �F2	�.

�iii� G�q��−q2+o�q2� for ��1, where o�q2� is a power
vanishing faster than 2 and including the main singular part
of this small-q expansion proportional to q�3+��/2 �with loga-
rithmic corrections for � integer larger than 1�. This implies
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again W�F��F−�5+��/2 at large F �giving a finite variance
�F2	�.

Summarizing, we can say that, in general, W�F�
�F−�5+��/2 with ��0 at large F, implying that all the mo-
ments �F�	 diverge for �� �3+�� /2.

3. Small displacements

In this last case, displacements are permitted up to a dis-
tance 
�� /2. Consequently, there will be a positive mini-
mal distance x*=�−2
 between any two particles. This im-
plies that ��x�=−1 identically for x�x*, as around any
particle there is a minimal empty region of radius x*. There-
fore, Eq. �53� can be rewritten as

G�q� = − 4
n0

x*

�

dxx2�1 + ��x���1 −
x2

q
sin� q

x2�� .

�55�

The large-F behavior of Eq. �50� is essentially determined by
the small-q behavior of this function. Since x*�0, and
��x�→0 for x→�, one can verify easily that the integral in
Eq. �55� can be expanded in Taylor series to all orders in q
with finite coefficients, i.e., G�q� and, consequently, A�q� are
analytic functions of q. From Fourier transform theorems
�28�, one can then infer that P�F� vanishes at large F faster
than any negative power of F, i.e., W�F� has all moments
�Fn	 finite. To leading order in q, we can write



x*

�

dxx2�1 + ��x���1 −
x2

q
sin� q

x2��
=

q2

6



x*

�

dx
1 + ��x�

x2 + O�q4� . �56�

Therefore, at small q the characteristic function A�q� has the
following behavior:

A�q� = 1 −
q2	F

2

6
+ O�q4� , �57�

where

	F
2 = 4
n0


x*

�

dx
1 + ��x�

x2 �58�

is the approximation we obtain with this method for the vari-
ance �F2	 of the force F. It is important to stress that this
formula for 	F

2 is expected to apply to our SL only when 
 /�
approaches sufficiently the value 1/2, i.e., when displace-
ments are large enough to make the amplitude of ��x� small.
For smaller values of 
, Eqs. �28� and �30� have instead to
be applied to calculate �F2	.

Note that the 3D isotropic �i.e., monovariate� and uncor-
related Gaussian PDF reads

PG�F� = � 3

2
	F
2 �3/2

exp�−
3F2

2	F
2 � �59�

and has a characteristic function

AG�q� = exp�−
q2	F

2

6
� , �60�

which has the same second-order small-q expansion as that
of Eq. �57� �i.e., the same lowest-order cumulant-generating
function G�q��. Therefore, we can say that in our case, if 
 is
not much smaller than � /2, P�F� is approximately given by
the 3D Gaussian �59� where �F2	 is approximated by 	F

2 ,
which is given by the covariance function via Eq. �58�. Note,
however, that Gaussianity is only approximate. In fact, terms
of order equal to or higher than q4 from the expansion of Eq.
�55� are in general not vanishing, differently from the case of
Eq. �59� where the cumulant-generating function is a simple
quadratic function of q. Instead, the fourth-order term of the
Taylor expansion of Eq. �55� can be written in general as
4
n0c4q4 �the quantity �
 /6�n0c4 is the fourth cumulant of
F� with

c4 =
1

5!



x*

�

dx
1 + ��x�

x6 .

In order to evaluate how large is the deviation from pure
Gaussianity due to the fourth- �and higher-order� cumulant
term, one has to compare 4
n0c4 with 	F

4 /72. In fact, the
fourth-order term of the Taylor expansion of the pure Gauss-
ian AG�q� �Eq. �60�� is �	F

4 /72�q4, while in our case the
fourth-order term of A�q� is �	F

4 /72+4
n0c4�q4. Therefore,
the quantity

�NG =
288
n0c4

	F
4 =

3

20
n0



x*

�

dx�1 + ��x��/x6

�

x*

�

dx�1 + ��x��/x2�2 �61�

is a good measure of the degree of the non-Gaussianity of
P�F�. The quantity �NG is called in probability theory the
kurtosis excess �29�. It measures the importance of the large-
F tail with respect to the Gaussian case with the same vari-
ance. When �NG�1 �i.e., 2
 /��1�, we can say that the
deviation of P�F� from the Gaussian PG�F� in Eq. �59� is
small, while, on the other hand, if instead �NG�1, the de-
viation starts to be appreciable and the large-F tail of P�F�
starts to be considerably fatter than that of PH�F�, and finally
for �NG�1 �i.e., for 
�� /2� the Gaussian approximation is
inappropriate and P�F� starts to develop the power-law tail
described above for the cases of large and marginal displace-
ments. This deviation from Gaussianity �see below� clearly
increases with 
 and in general diverges when 
 approaches
� /2: in fact, for this value all the moments higher than a
given value diverge. Therefore, for 2
→�− we expect to see
large discrepancies of P�F� with respect to Eq. �59�.

In general, for small �x−x*��0 the covariance ��x� in the
present case behaves as �1+��x��=B�x−x*�� with positive B
and � depending on p�u�. By changing the value of � �i.e., in
our case of a SL, by changing the scaling behavior of p�u� in
the neighborhood of u=
�, we can have or not a diverging
behavior of 	F

2 and c4 when x*→0+, that is, when 

→ �� /2�−, and displacements are permitted up to exactly the
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lattice cell boundaries. However, in general we can say that
the deviation from pure Gaussianity given by �NG increases
with 
 and diverges at 
=� /2 for ��5.

For what concerns the approximate variance 	F
2 , it is

simple to show that if �i� ��1, this quantity diverges as
x*�−1���−2
��−1, if �ii� �=1, it diverges as −log��−2
�
�as we have already seen above in the case in which 

=� /2 exactly�, and if �iii� ��1, it converges to a finite
value. In a similar way it is simple to see that c4 diverges as
��−2
��−5 for ��5 �implying a large-F tail slower than
1/F7, for P�F��, logarithmically for �=5, and converges oth-
erwise.

Finally, Gaussianity �i.e., a PDF given by Eq. �59�� is
almost exact when 
�� /2.10 However in this case the ap-
proximation given by Eq. �58� for the variance �F2	 of F in
the SL is not a good one. In fact, in this case substituting
such a SL with inhomogeneous Poisson particle distribution
with a radial density around the origin �where we calculate
the force� equal to the average conditional density of the SL
is a bad approximation as ��x� acquires large values around
the Bragg peaks. Nevertheless, following also the results in
d=1 presented above, in this case we can say again that F is
approximately a 3D Gaussian variable �i.e., with a PDF
given by Eq. �59��, but with �F2	 given by Eq. �28�.

B. Small-F behavior of P„F…

In order to find the small-F behavior of P�F�, first of all
we note �see the first formula of Eq. �36a�� that in the homo-
geneous Poisson case

PH�0� = 4


0

�

dqq2 exp�− n0CH�q��

is finite, i.e., WH�F��F2. In our case, from Eqs. �50� and
�53�, P�F� for F=0 is given by

P�0� =
 d3qA�q� = 4


0

�

dqq2 exp�− n0CH�q�

− 4
n0

0

�

dxx2��x��1 −
x2

q
sin� q

x2��� . �62�

It is simple to verify that for any possible covariance func-
tions ��x� the quantity P�0� stays finite, i.e., again W�F�
�F2. Roughly speaking, the more the particle distribution
shows anticorrelations, the larger will be the value P�0�, i.e.,
the larger will be the probability of observing a small value
of F. On the contrary, the larger the positive correlations, the
smaller the value of P�0�. In particular, in our case of a
randomly perturbed lattice the system is superhomogeneous,

that is, 
d3x��x�=−1, and therefore negative density-density
correlations are always more important than positive corre-
lations. This means that in general, given the structure of Eq.
�62� �and in particular the fact that sin t / t�1 for any t�0�,
P�0�� PH�0�. Only in the limit of random displacements in
the whole system volume do we have P�0�→PH�0�. More-
over, in general, the smaller the typical displacements are,
the larger will be the contribution of anticorrelations to Eq.
�62� and then the larger P�0�.

VIII. COMPARISON WITH NUMERICAL SIMULATIONS

In this section, we compare our theoretical predictions for
the statistics of F �specifically, the variance and the global
PDF� we have given in the previous sections with numerical
results for the same quantities obtained directly by computer
simulations of the SL particle distribution with given p�u�.
The paradigmatic example, on which we concentrate our nu-
merical analysis, is given by the case in which the three
components ui with i=1,2 ,3 along the three orthogonal axes
of the displacement u applied to the generic particle are sta-
tistically independent and uniformly distributed in a symmet-
ric interval, i.e.,

p�u� = �
i=1

3

f�ui� , �63�

with

f�ui� = �
1

2

for �ui� � 


0 otherwise.
� �64�

In this case, the average quadratic displacement is

u2 =
3

2




−


+


x2f�x�dx = 
2

or u2 /�2=�2 in normalized units �=
 /�. The FT of p�u�,
i.e., the characteristic function of the random displacements,
is simply given by

p̂�k� = F�p�u�� = �
j=1

3
sin�kj
�

kj

,

where kj is the jth component of k. By using Eq. �7�, it is
then simple to verify that the PS P�k� of the SL is given by

P�k� = �3�1 − �
j=1

3
sin2�kj
�

�kj
�2 �
+ �2
�3 �

H�0
��

j=1

3
sin2�Hj
�

�Hj
�2 ���k − H� . �65�

This expression reduces at small k to �19,20�

P�k� =
1

3
�3
2k2 =

1

3
�5�2k2, �66�

which depends only on k= �k�, i.e., mass �or number� fluctua-
tions are statistically isotropic on large scales even though

10This can be seen more rigorously noting that for this range of 
,
the linear expansion �28� is valid. Therefore, each component of the
force F can be seen as the sum of independent random variables
with finite variance and satisfying the Lindeberg condition �30�.
This allows us to apply the central limit theorem with good approxi-
mation to each component of F, which, consequently, becomes a
well-defined Gaussian variable in the infinite volume limit.

GABRIELLI et al. PHYSICAL REVIEW E 74, 021110 �2006�

021110-14



the SL is not because of the underlying lattice symmetry. In
Fig. 2, the PS of the 1D analog of such a SL with ��1/2 is
given. In this figure, both the k2 scaling behavior at small k
and the modulation of the Bragg peaks of the initial lattice by
the factor �p̂�k��2 are clear.

For our particular choice of p�u�, it is possible to calculate
the inverse FT of Eq. �65� to obtain, through Eq. �4�, the
off-diagonal covariance function ��x� for all values of 
. Let
us call n the integer part of the ratio 4
 /�. We can write

1 + ��x� = � �

2

�3

�
j=1

3 � �xj�
2


− 1���2
 − �xj�� + �
j=1

3 �1 − �
�



�2

+
�

�2
�2 �
m=−�

+�

�2
� − �xj − m�����2
� − �xj − m���� ,

�67�

where ��x� is the usual Heaviside step function, and 2
�
= �2
−n� /2� if n is even or zero and 2
�= ��n+1�� /2
−2
� if n is odd. It is important to notice that 0�2
�
�� /2 for all 
 values. The function ��x� given by Eq. �67�
has in general a very complicated oscillating form, with the
exception, as shown below, of the case in which 
=m� /2
exactly with m integer. However, for a generic 
 we can say
that it is continuous and is composed of two different contri-
butions. The former is given by the first product of Eq. �67�
and comes from the continuous �i.e., purely stochastic� part
of the PS, and the latter, given by the second product that is
a lattice periodic function, comes from the modulated Bragg
peaks part of the PS. For all the choices 
=m� /2 with inte-
ger m, the “Bragg peaks contribution” exactly vanishes leav-
ing only the first stochastic contribution: this means that for
these values of 
, the system becomes statistically transla-
tionally invariant. Note that for 
�� /2 we have ��x�=−1
identically in the cube of side �xi�� ��−2
� for all i
=1,2 ,3, meaning that the probability of finding a particle in
such a cube centered around any other particle is strictly zero
for these values of 
.

We can now draw the following general conclusions for
all the possible choices of �=
 /�. For simplicity, we start
with the limiting case �=1/2, and then we analyze, respec-
tively, the cases ��1/2 and ��1/2.

A. Large-F prediction for �=� /2

For �=1/2, it is straightforward to find the exact result

��x� = − �
j=1

3

�1 − �xj�/����� − �xj�� . �68�

Thus ��x� is in this case nonvanishing, and negative, only in
the cube −��xj �� for all j=1,2 ,3. As mentioned above, in
this case the lattice Bragg peaks of Eq. �65� are completely
erased by the displacements and the system is statistically
invariant under translations. Expression �68� at x�� gives

��x� � − 1 + �
j=1

3 �xj�
�

. �69�

Therefore, the SL falls in the class of Sec. VII A 2 with �
=1, i.e., with P�F��F−5 at large F �or equivalently W�F�
�F−3� and, from Eq. �58�, logarithmically diverging vari-
ance 	F

2 . In order to have a more quantitative description of
this case, we mimic the anisotropic Eq. �68� with the follow-
ing isotropic ��x�:

���x� = �− 1 + �


6
�1/3 x

�
���� 6



�1/3

� − x� , �70�

i.e., an isotropic function with a linearly increasing behavior,
similar to the one in Eq. �69�, from ��=−1 at x=0 to ��=0 at
the border and outside the sphere centered at x=0 with the
same volume �2��3 �i.e., radius R= �6/
�1/3�� as that of the
cubic region in which the function ��x� in Eq. �68� increases
from −1 to 0. By using this expression in Eq. �53�, and for
q��2, we obtain

A�q� � exp�2��q�2 ln��q�� = ��q���q�,

with �= �
 /6�2/3�−2 and ��q�= ��q�2. By studying the inverse
FT leading from A�q� to P�F�, and therefore to W�F�, we
obtain at large F

W�F� � 2
�


6
�1/3

�−4F−3. �71�

B. Large-F prediction for ��� /2

For ��1/2, we can say that the SL falls in the class of
Sec. VII A 3, with �=1. It is simple to verify from Eq. �67�
that ��x�=−1 identically in the cube �xi�� ��−2
� with i
=1,2 ,3. As written in the previous section, in this case P�F�
is expected to be rapidly decreasing at large F and with finite
average quadratic force 	F

2 = �F2	 as all the higher-order mo-
ments.

More precisely, for ��1/2, P�F� is expected to be given,
to a good approximation, by Eq. �59� �i.e., Gaussian with a
small kurtosis excess� with a variance 	F

2 given by Eq. �30�,
where u2=
2. Instead for � approaching 1/2, i.e., �1−2��
�1, we expect 	F

2 to be given, once a suitable isotropic
approximation is introduced, by Eq. �58�. A large kurtosis
excess �NG for this range of � is also expected, implying
large deviations from pure Gaussianity. It is particularly in-
teresting to study the diverging behavior of 	F

2 for �
→ �1/2�− using Eq. �58� to test the validity of this approxi-
mated analytical result through comparison with measures
from numerical simulations. In order to apply Eq. �58� to our
SL case, we need an isotropic approximation as good as pos-
sible for ��x�. First of all it is important to note that �i� for x
just outside the cube �xi�� ��−2
� with i=1,2 ,3, the func-
tion ��x� grows linearly, �ii� ��x� grows up to the surface of
the cube �xi��2
�� with i=1,2 ,3, �iii� outside the cube
��x� is a function with the periodicity of the lattice with
amplitude at most of order �1−2���1, and with zero mean
on the period �i.e., on the elementary cell�. These observa-

FORCE DISTRIBUTION IN A RANDOMLY PERTURBED¼ PHYSICAL REVIEW E 74, 021110 �2006�

021110-15



tions, combined with the same argument leading to Eq. �70�,
for �=1/2, permit one to approximate ��x� simply with

���x�

� �
− 1 for x � x*

��


6
�1/3 �x − x*�

2

− 1���� 6



�1/3

� − x� for x � x*,�
�72�

where x*= �6/
�1/3��−2
� is chosen so that ���x�=−1 in the
whole sphere around x=0 with the same volume 8��−2
�3

as the cube where the exact ��x�=−1 identically, and
�6/
�1/3� is analogously the radius of the sphere with vol-
ume 8�3 �i.e., the volume of the cube around x=0 outside of
which ��x� is everywhere small and at most of order �1
−2���. Clearly this is a rough approximation to ��x�. How-
ever, we will see that it permits one to predict both the loga-
rithmic divergence in �1−2�� of 	F

2 and its order of magni-
tude. In fact, by using the function �72� as ��x� in Eq. �58�,
with n0= l−3, we obtain the following logarithmically diverg-
ing behavior for �→ �1/2�− of 	F

2:

	F
2 � − 4
�


6
�1/3 ln�1 − 2��

2��4 . �73�

Moreover, as discussed in the previous section, for values of
� such that �1−2���1 the kurtosis excess �NG is expected to
be large, implying a large deviation from Gaussianity of
P�F�. This can be seen by using Eq. �72� in Eq. �61�, which
gives for the present case

�NG �
�

400�ln�1 − 2���2 �1 − 2��−4. �74�

It is important to underline that this result is valid when Eq.
�72� is valid, i.e., when � is not too far from the value 1/2.
From Eq. �74� one can simply see that �NG�0.24 for �
=0.4 and �NG�1.18 for �=0.44. Moreover, beyond this
value, �NG diverges monotonously as �1−2��−4 for larger �.
The right interpretation of this result is given directly by the
statistical meaning of the kurtosis: by increasing � in this
range, W�F� becomes more peaked and with a large-F tail
fatter and fatter than the 3D Gaussian distribution �59� with
the same variance 	F

2 .

C. Large-F prediction for ��� /2

Since the approximated Chandrasekhar approach to the
SL problem is more and more precise when � increases, we
expect for ��1/2 a better quantitative agreement between
the analytic results and the numerical simulations than in the
previous two cases. In this range of displacements one has
��0��−1, meaning that on average a particle sees a density
of other particles larger than zero at a vanishing separation,
as each particle can be found arbitrarily close at least to
another particle. This implies that such a SL falls in the class
of Sec. VII A 1 with a large-F tail of W�F� with the same
scaling as that of the Holtzmark distribution but with a dif-

ferent amplitude depending on the value of ��0�. This is clear
from Eq. �54�, which we rewrite here for convenience as

W�F� = �1 + ��0��WH�F� �75�

at large F, where WH�F� is given by Eq. �36b�. As explained
in Sec. VII A, as in the homogeneous Poisson case, the sta-
tistically dominant contribution to the force acting on a par-
ticle in this ccase comes from its nearest neighbor. From Eq.
�67� it is simple to find that

1 + ��0� = �1 +
�

2

�
�



� − �
�



�2�3

− � �

2

�3

. �76�

Therefore, depending on the choice of 
 we can have both
�1+��0�� smaller or larger than 1, i.e., with a statistical
weight for large values of F smaller or larger than in the
homogeneous Poisson particle distribution, respectively, de-
pending on whether the probability of finding the nearest
neighbor at very small distances is smaller or larger than in
the Poisson case. However, as the initial lattice configuration
presents negative density-density correlations at small scales,
for most of the choices of 
 one has −1���0��0 and there-
fore the large-F tail of W�F� has a smaller amplitude than
WH�F�. In general, by taking only the largest terms beyond
one in Eq. �76�, we can say that for large 
, the large-F ratio
of W�F� /WH�F� approaches unity as �1−O��−2��, where
O�x��x.

D. Small-F predictions

For what concerns the small-F behavior of W�F�, we have
already seen in the previous section that for all values of �
we have W�F��4
P�0�F2 with the prefactor P�0� depend-
ing on ��x�. More precisely, for ��1/2 we have just seen
that P�F� coincides to a good approximation with the Gauss-
ian �59�. Therefore, one has simply P�0�= �3/ �2
	F

2��3/2,
where 	F

2 is given by Eq. �30�. For higher values of �, when
the approximate Chandrasekhar approach starts to work, in
order to find P�0�, one should solve the integral �62� where
��x� is some appropriate isotropic approximation of Eq. �67�.
Clearly this is a task that it is very difficult or impossible to
perform analytically. However, for ��1/2, i.e., when W�F�
is power law at large F, one can adopt the following simple
method to have a rough approximation for the amplitude of
the small-F tail of W�F� and therefore obtain a useful ap-
proximation of W�F� for all values of F to be used to evalu-
ate averages of arbitrary functions of F. One assumes the
following simple shape for W�F�,

W�F� = � AF2 for F � F0

BF−� for F � F0,
� �77�

where, respectively, as found above, �=3 and B
=2
�
 /6�1/3�−4 for �=1/2, and �=5/2 and B=2
�1
+��0���−3 �where we have used Eqs. �75� and �36a�� with
��0� given by Eq. �76� for ��1/2. In order to find A and F0,
we impose the following two conditions: �i� small-F and
large-F tails take the same value at F=F0, �ii� normalization
of W�F�, i.e., 
0

�dFW�F�=1. The first condition implies
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AF0
2 = BF0

−�,

while the second �normalization� condition gives the equa-
tion

A

3
F0

3 +
B

� − 1
F0

1−� = 1.

These two equations can be solved to give

A = BF0
−2−�,

F0 = � 3�� − 1�
B�� + 2��1/�1−��

. �78�

In particular, it is important to note that for ��1/2 these
formulas imply that

F0 � �1 + ��0��2/3,

A � �1 + ��0��−2, �79�

where again ��0� is given by Eq. �76�.

E. Comparison with numerical simulations

To test the above analytical results, we have generated
numerically several simple cubic SL, with fixed � �for sim-
plicity we have chosen �=1, i.e., n0=1� and different values
of 
 in order to study 	F

2 and W�F� in a wide range going
from ��1/2 to ��1/2. We expect then to see the transition
of P�F� from nearly Gaussian for small � to nearly Holtz-
mark for large values of � when the particle distribution
approaches the Poisson one. For each chosen value of �, we
have evaluated the PDF W�F� in the following way: for each
realization of the SL, the force is evaluated on the “central”
particle �i.e., on the particle farthest from the boundaries of
the system�; then W�F� is evaluated as a normalized histo-
gram over 105 realizations. The force F on the central par-
ticle is computed by using the Ewald sum method for lattice
sums for the cases ��0.3 �i.e., when the SL keeps clear
lattice features� in order to make this evaluation faster and
precise. For larger values of �, on the other hand, F is given
by the simple sum of the contributions coming from all other
particles included in the largest sphere centered on the cen-
tral particle.

In Fig. 4, we present the numerical results for 	F versus �
for ��1/2 compared with the theoretical prediction for
small displacements given by Eqs. �30� and �31�. The agree-
ment is excellent up to ��0.2. Beyond this value 	F in-
creases faster than the theoretical prediction for small dis-
placements ��1/2, and starts to show the diverging
behavior for �→ �1/2�− as predicted by Eqs. �58� and �73�.

This point is shown better by Fig. 5, where, in order to
show the logarithmically diverging behavior of 	F

2 when �
→ �1/2�−, we have plotted the numerical results for 	F

2 ver-
sus �1−2��, with a logarithmic scale for the latter, for 0.4
���0.499 �and choosing as above �=n0=1�. Indeed, if the
approximated theoretical prediction Eq. �73� of a logarithmic
divergence is right, this should give a straight line. This pre-
diction is verified by the numerical simulations, albeit with a

prefactor in the logarithm which is smaller than the theoret-
ical one. This discrepancy can be explained by the strong
approximations adopted in Sec. VII to obtain Eq. �73�.

In Fig. 6, we report the comparison for the PDF W�F�
between the Gaussian theoretical prediction Eq. �59� and 	F

2

as given by the linear approximation ��F�l��2	 of Eq. �30� for
an example of the case ��1/2 �we have chosen �=0.05�
and the numerical results.

In Fig. 7, on the other hand, we report the numerical
evaluation of W�F� for the cases �=0.4 and 0.45 versus the
Gaussian WG�F� PDFs with the same variances. As theoreti-
cally predicted by Eq. �74�, already for �=0.4 it starts to be
evident that the actual W�F� has a fatter large-F tail and a

FIG. 4. Behavior of 	F vs �=
 /� for p�u� given by Eqs. �63�
and �64� with ��1/2. For ��0.2, Eqs. �30� and �31� �dashed
straight line�, which are valid only for ��1/2, apply very well and
the agreement with numerical results �circles� is excellent up to
approximately ��0.2. For larger values, the actual values of 	F

start to increase faster than this simple linear prediction and the
approximation in the manner of Chandrasekhar given in Sec. VII
starts to work as shown well by the next figure.

FIG. 5. Numerical results �circles, and best fit given by the
dashed line� vs the approximated theoretical prediction �continuous
line� Eq. �73� obtained in Sec. VII, with �=n0=1. The numerical
results, as predicted by Eq. �73�, show a logarithmic divergence of
	F

2 in �1−2��. However, the slope is about 20% smaller than the
approximated theoretical prediction. Considering that this theoreti-
cal result is obtained by a strong approximation �which becomes
accurate only for larger values of ��, which consists in mimicking
the SL with an inhomogeneous Poisson particle distribution with
radial density equal to the average conditional density in the SL, we
consider this to be a good result.
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peak lower than that of WG�F�. In fact, for such values of �
the kurtosis excess �NG acquires a significantly positive
value. This discrepancy becomes even more clear for �
=0.45 for which �NG�2.1. In fact, in this case the large-F
tail starts to develop a power-law feature even though an
exponential cutoff is still evident.

The “critical” case �=1/2 �i.e., where for the first time
W�F� develops a power-law large-F tail� is represented in
Fig. 8, where the numerical W�F� is compared with the the-
oretical prediction for the large- and small-F tails, respec-
tively, given by Eqs. �71� and �78�. Despite the roughness of
the approximation, notably for the small-F amplitude A, the
agreement is very good.

The Holtzmark-like case ��1/2 for W�F� is represented
in Fig. 9 for the particular value �=1 of the shuffling param-
eter. It is compared both with the exact Holtzmark distribu-
tion obtained in a Poisson particle distribution with the same
average number density, and with the theoretical predictions

for the large- and small-F tails given, respectively, by Eq.
�75�, with ��0� given by Eq. �76�, and Eq. �78�. On the one
hand, we see that the W�F� approximates quite well the exact
Holtzmark one, confirming that the shape of W�F� is mainly
determined by the small separation properties of the particle
distribution. On the other hand, we see also that our theoret-
ical approximation shows a good agreement with simula-
tions, although the small-F prediction is rougher than the
large-F one. This is due to the very simple method we have
adopted in Sec. VIII D to evaluate the amplitude of this tail
instead of calculating the more precise but difficult Eq. �62�.

Finally, as a further test of our theoretical predictions, we
have plotted in Fig. 10 the ratio W�F� /WH�F� giving a mea-
sure of the dependence on � of the large-F tail of W�F� for a
wide range of values ��1/2. We have compared these val-
ues with the theoretical prediction given by Eq. �75�, with
��0� given by Eq. �76� as functions of �. The agreement
between numerical simulations and theory for this quantity is
impressive, particularly so given the nonmonotonous behav-
ior of ��0�.

IX. DISCUSSION AND CONCLUSIONS

In this paper, we have presented a detailed study of the
statistical distribution of the total gravitational �or Coulomb�

FIG. 6. W�F� found numerically for a SL with �=0.05�1/2
and the theoretically predicted Gaussian distribution WG�F�
=4
F2PG�F�, where PG�F� is defined by Eq. �59� with 	F

2 given by
��F�l��2	 of Eq. �30�. The agreement between the two curves is very
good.

FIG. 7. Comparison between W�F� found numerically for a SL,
respectively, with �=0.4 and 0.45 and the Gaussian distributions
WG�F�=4
F2PG�F� with the same variances �F2	. One observes
that in both cases, W�F� has its peak at smaller F and a more
significant large-F tail than the Gaussian approximation as pre-
dicted by Eq. �74� giving a well defined positive kurtosis excess
�NG. The closer � approaches the “critical” value 1/2, the larger is
this deviation.

FIG. 8. Numerical W�F� from simulations of computer realiza-
tions of the SL with �=1/2. The large and small F power-law
approximations are given, respectively, by Eqs. �71� and �78�.

FIG. 9. Comparison between numerical W�F� for the case �
=1 with the exact Holtzmark distribution and the theoretical predic-
tions given by Eq. �75�, with ��0� given by Eq. �76�, and Eq. �78�.
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force acting on a particle belonging to a randomly perturbed
lattice and due to the sum of the pair gravitational interac-
tions with all the other particles.

In the first part of the paper, we studied the case in which
the displacements applied to the lattice particles to produce
the perturbed lattice are small. In particular, we analyzed the
linear expansion of the force in the displacements. We ob-
served seen that if only displacements strictly smaller than
half the lattice cell size are permitted, this linear expansion
can be used to calculate to a good approximation the force
variance. Otherwise, this variance goes to infinity, due to the
small-scale divergence of the pair interaction, even though
the average quadratic displacement is kept small. We have
seen that in the case in which the force variance is finite, it
can be seen as the sum of two different terms: the former
comes from the small random displacements from the lattice
position of the sources keeping the particle on which the
force is calculated fixed at its initial lattice position, and the
latter comes from the displacement of this particle from the
lattice position keeping at the same time the sources at the
initial lattice positions. This second term can also be seen as
the contribution of the uniform negative background if it is
obtained by summing the contribution with respect to the
original lattice position of the particle feeling the force.

In the subsequent sections, we focused our attention on an
approximate extension to our case of the Chandrasekhar ap-
proach leading to the Holtzmark PDF for the homogeneous
Poisson particle distribution. In this way, we have been able
to find approximate expressions both for the force PDF and
its characteristic function �and the cumulant generating func-
tion� for all the range of typical displacements. We have seen
that from a qualitative point of view, this functional predic-
tion holds for the whole range of random displacements, and
that the agreement becomes quantitatively good for typical
displacements of the order of or larger than half the lattice
cell size �i.e., when density-density correlations start to be
small and the contribution of the Bragg peaks to the particle
PS is strongly reduced�.

All the above results have then been positively confirmed
by a direct comparison with numerical simulation of the sys-
tem in which the SL particle distributions are generated with
a Monte-Carlo-like method and the force probability distri-
bution is numerically computed.

We have underlined that, in general, when � starts to be of
the order of half the lattice cell size, i.e., when the minimal
permitted distance between particles vanishes, the force PDF
is dominated by the first NN contribution becoming very
similar to the Holtzmark distribution WH�F� even though at
large distances the SL particle distribution is still very differ-
ent from a homogeneous Poisson particle distribution. As has
been noted, this is due to the small-scale divergence of the
gravitational �or Coulomb� pair interaction between particles.
This suggests that, when the minimal permitted distance be-
tween particles vanishes, the same behavior for W�F�, both at
small and large F, is expected to be found in all the spatial
particle distributions sharing the same small-scale correlation
properties independently of the large-scale features. This can
be seen clearly in Eq. �79�, where it is shown that while the
small and large F exponents of W�F� are universal, the am-
plitudes depend only on ��0�.

To conclude, let us finally return briefly to comment on
the applications of the results and methods we have just
found. They can be useful in various different contexts men-
tioned in the Introduction, but we will discuss here only the
primary application that has motivated our own study,
namely the comprehension of the dynamics of self-
gravitating systems studied in cosmology. In this context,
large numerical “N-body” simulations of purely self-
gravitating, essentially pointlike11 particles are used to model
the evolution of a self-gravitating fluid. The probability dis-
tribution of the force on a given particle is a useful quantity
to understand notably in considering �i� the early time dy-
namics and, more specifically, �ii� questions concerning the
effects of discreteness in these simulations �see �16,31��. In
�17�, we report a full analysis of the dynamics of the gravi-
tational evolution of N-body simulations from precisely the
SL initial conditions analyzed here, and the results given
here will be directly applied in understanding these ques-
tions. Much can be understood from this study about the case
of real cosmological N-body simulations, in which the initial
conditions are lattices subject to small correlated perturba-
tions. In this respect, we note that the methods developed
here, notably the approximate generalization of the Chan-
drasekhar method, can in principle be generalized to such
distributions. The present study of the SL is just a first sim-
pler starting point. Further, the methods used here can be
seen as a first example for calculations of other statistical
quantities in such distributions of relevance in understanding
the dynamics of these self-gravitating systems at larger
scales and longer times, e.g., the probability distribution of
the force on the center of mass of coarse-grained cells, the
two-point correlation functions of gravitational force as a
function of separation, etc.
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APPENDIX A: SMALL-q ANALYSIS OF THE CUMULANT
GENERATING FUNCTION G„q…

In this appendix, we provide some details of the small-q
expansion of the cumulant generating function G�q� as de-
fined in Eqs. �52� and �53� for 
�� /2. As explained in Sec.
VII, for such values of 
 and sufficiently small x, the corre-
lation function ��x� can be written as

��x� = ��0� + Bx� + o�x�� , �A1�

where ��0�=−1 for 
=� /2 and −1���0�� +� for 

�� /2, and B ,��0. Let us suppose that the expansion �A1�
is valid for x�x0 with x0�0, and rewrite the integral in Eq.
�53� as the following sum of two integrals:

G�q� = − 4
n0�

0

x0

dxx2�1 + ��x���1 −
x2

q
sin� q

x2��
+ 


x0

+�

dxx2�1 + ��x���1 −
x2

q
sin� q

x2��� . �A2�

Now in the first integral we can use Eq. �A1�, while in the
second one, assuming q�x0

2, we can expand sin�q /x2� in
Taylor series. Since x0�0 and independent of q, and ��x�
vanishes for x→ +�, it is now simple to show that the sec-
ond integral is of order q2 at small q. Let us call I�q� the first
integral, i.e.,

I�q� = 

0

x0

dxx2�1 + ��x���1 −
x2

q
sin� q

x2�� .

By using Eq. �A1�, we have

I�q� = �1 + ��0��q3/2

0

x0/�q

dtt2�1 − t2 sin�t−2��

+ Bq�3+��/2

0

x0/�q

dtt2+��1 − t2 sin�t−2�� + o�q�3+��/2� ,

�A3�

where we have changed the variable to t=x /�q in both inte-
grals. In Eq. �A3�, the first integral converges in the limit q
→0 while the second one converges only for 0���1, di-
verges logarithmically for �=1, and diverges as q�1−��/2 for
��1. Therefore, we can conclude that for ��0��−1, i.e.,

�� /2, in the limit q→0 up to the dominant term we have

G�q� � − 4
n0I�q�

� − �4
n0�1 + ��0��

0

�

dtt2�1 − t2 sin�t−2���q3/2

= − n0�1 + ��0��CH�q� . �A4�

Instead for ��0�=−1, i.e., 
=� /2, the coefficient of the first
integral of I�q� vanishes, and the second one �considering
also the second integral of Eq. �A2� for ��1, which is also
of order q2� gives

G�q� � �− q�3+��/2 for 0 � � � 1

q2 ln q for � = 1

− q2 for � � 1.
� �A5�

Note that even for ��1, differently from the case 
�� /2,
the small-q expansion of G�q� contains a singular part even
though it is of order higher than q2.
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